|
技术前沿|计算化学和数据科学:有效降低医药工艺开发风险与成本随着计算材料科学和工艺模拟的进步,计算应用正在成为药物开发和生产流程的重要组成部分。这些方法可以在药物工艺开发任务中的复杂多维空间里提供更便捷的导航。通过计算与实验相结合的方法,可以降低药物开发的风险并显著节省时间和成本。计算化学和数据科学都是最流行的计算方法,如本文所阐述的,旨在为药物开发工作流程提供合理的指导。通过它们的使用来优选最有希望的解决方案,降低实验工作的风险,以进行有针对性的实验跟进。 计算能力 在博腾,通过使用各种计发表时间:2025-02-09 11:14 随着计算材料科学和工艺模拟的进步,计算应用正在成为药物开发和生产流程的重要组成部分。这些方法可以在药物工艺开发任务中的复杂多维空间里提供更便捷的导航。通过计算与实验相结合的方法,可以降低药物开发的风险并显著节省时间和成本。计算化学和数据科学都是最流行的计算方法,如本文所阐述的,旨在为药物开发工作流程提供合理的指导。通过它们的使用来优选最有希望的解决方案,降低实验工作的风险,以进行有针对性的实验跟进。 计算能力 在博腾,通过使用各种计算方法,从分子力学到量子化学和数据科学,来研究多种体系,从小分子到复杂新药模式,涉及气相、液相和固相。选择方法时需要在预测精度和应用计算可行性之间权衡,也要考虑用于挖掘和分析的历史数据量以及可能会发挥作用的人工智能/机器学习(AI/ML)模型构建。 ![]() 图1 博腾化学计算能力(Computation Chemistry Capabilities),在理论和应用系统方面。 计算应用 通过分子模拟和数据科学来提供计算与实验相结合的项目支持可以分为四类:虚拟(计算)筛选、性质表征与优化计算、化学反应和反应性预测、以及基于 AI/ML 的 DoE 计算。所有应用均已在多个内部和外部项目中验证。 虚拟(计算)筛选 虚拟筛选是一种计算技术,用于对化合物数据库(例如溶剂、共晶形成剂、对离子或辅料)进行排序,以识别特定任务中最有前景的解决方案。推荐最有利的化合物子集以供目标实验跟进。 对于结晶做溶剂和共晶体形成剂/对离子的虚拟筛选时,仅需要活性药物成分(API)的分子结构作为输入,来筛选62种二类和三类溶剂,以及超过100种共晶体形成剂和对离子。溶剂和共晶体形成剂虚拟筛选的平均表现估计在1.0满分中高于0.85。对离子的虚拟筛选准确性略低一些。用于杂质去除的最佳溶剂体系选择的平均表现高于0.85。 表1 虚拟筛选方法 ![]() ![]() 图2 通过各种虚拟筛选方法,将计算和实验相结合进行共晶剂/对离子与溶剂筛选,用于多种固态形式的结晶。 特性表征与优化方法 表2提供了用于特性表征和优化的计算方法。这些方法的主要目标是在实验测量之前或代替实验测量来预测固态形式或分子的固有特性,当实验评估被一些物理现象影响(例如,极性氢导致的 X 射线散射差,从而使得利用 SCXRD 区分盐与共晶固态形式变得复杂)或测试材料不足时(例如,杂质),这种计算方法就显得尤为重要。大多数特性表征方法都包括了量子化学计算,并可以或者已用于新型形式系统的表征。 表2 性能表征和优化方法 ![]() 化学反应与反应性预测 通过量子力学计算,可以预测目标溶剂体系中反应的热量和自由能。反应的区域选择性和立体选择性也可通过反应性计算进行研究。此外,还可进行过渡态搜索,以确定反应的活化能垒。这些计算有助于在实验前确定 |